Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=1/(x^2)+x
Étape 1
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.2.2.2
Multipliez par .
Étape 2.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.4
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.5
Simplifiez
Étape 2.3.6
Remettez les termes dans l’ordre.
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .