Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=x^3 , y(-1)=2
,
Étape 1
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Appliquez la règle de la constante.
Étape 2.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Élevez à la puissance .
Étape 4.2.2
Multipliez par .
Étape 4.3
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.3.3
Associez et .
Étape 4.3.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.3.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Multipliez par .
Étape 4.3.5.2
Soustrayez de .
Étape 5
Remplacez par dans et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Remplacez par .
Étape 5.2
Associez et .