Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Étape 1.1.2.1
Annulez le facteur commun de .
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Réécrivez l’expression.
Étape 1.1.2.2
Annulez le facteur commun de .
Étape 1.1.2.2.1
Annulez le facteur commun.
Étape 1.1.2.2.2
Réécrivez l’expression.
Étape 1.1.2.3
Annulez le facteur commun de .
Étape 1.1.2.3.1
Annulez le facteur commun.
Étape 1.1.2.3.2
Divisez par .
Étape 1.1.3
Simplifiez le côté droit.
Étape 1.1.3.1
Simplifiez chaque terme.
Étape 1.1.3.1.1
Annulez le facteur commun à et .
Étape 1.1.3.1.1.1
Factorisez à partir de .
Étape 1.1.3.1.1.2
Annulez les facteurs communs.
Étape 1.1.3.1.1.2.1
Factorisez à partir de .
Étape 1.1.3.1.1.2.2
Annulez le facteur commun.
Étape 1.1.3.1.1.2.3
Réécrivez l’expression.
Étape 1.1.3.1.2
Annulez le facteur commun à et .
Étape 1.1.3.1.2.1
Factorisez à partir de .
Étape 1.1.3.1.2.2
Annulez les facteurs communs.
Étape 1.1.3.1.2.2.1
Factorisez à partir de .
Étape 1.1.3.1.2.2.2
Annulez le facteur commun.
Étape 1.1.3.1.2.2.3
Réécrivez l’expression.
Étape 1.1.3.1.3
Placez le signe moins devant la fraction.
Étape 1.2
Factorisez dans .
Étape 1.2.1
Factorisez à partir de .
Étape 1.2.2
Remettez dans l’ordre et .
Étape 1.3
Réécrivez l’équation différentielle comme .
Étape 1.3.1
Factorisez dans .
Étape 1.3.1.1
Factorisez à partir de .
Étape 1.3.1.2
Remettez dans l’ordre et .
Étape 1.3.2
Réécrivez comme .
Étape 2
Laissez . Remplacez par .
Étape 3
Résolvez pour .
Étape 4
Utilisez la règle de produit pour déterminer la dérivée de par rapport à .
Étape 5
Remplacez par .
Étape 6
Étape 6.1
Séparez les variables.
Étape 6.1.1
Résolvez .
Étape 6.1.1.1
Simplifiez chaque terme.
Étape 6.1.1.1.1
Associez et .
Étape 6.1.1.1.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6.1.1.1.3
Multipliez par .
Étape 6.1.1.1.4
Déplacez à gauche de .
Étape 6.1.1.2
Soustrayez des deux côtés de l’équation.
Étape 6.1.1.3
Divisez chaque terme dans par et simplifiez.
Étape 6.1.1.3.1
Divisez chaque terme dans par .
Étape 6.1.1.3.2
Simplifiez le côté gauche.
Étape 6.1.1.3.2.1
Annulez le facteur commun de .
Étape 6.1.1.3.2.1.1
Annulez le facteur commun.
Étape 6.1.1.3.2.1.2
Divisez par .
Étape 6.1.1.3.3
Simplifiez le côté droit.
Étape 6.1.1.3.3.1
Associez les numérateurs sur le dénominateur commun.
Étape 6.1.1.3.3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.1.1.3.3.3
Simplifiez les termes.
Étape 6.1.1.3.3.3.1
Associez et .
Étape 6.1.1.3.3.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.1.1.3.3.3.3
Simplifiez chaque terme.
Étape 6.1.1.3.3.3.3.1
Simplifiez le numérateur.
Étape 6.1.1.3.3.3.3.1.1
Factorisez à partir de .
Étape 6.1.1.3.3.3.3.1.1.1
Élevez à la puissance .
Étape 6.1.1.3.3.3.3.1.1.2
Factorisez à partir de .
Étape 6.1.1.3.3.3.3.1.1.3
Factorisez à partir de .
Étape 6.1.1.3.3.3.3.1.1.4
Factorisez à partir de .
Étape 6.1.1.3.3.3.3.1.2
Multipliez par .
Étape 6.1.1.3.3.3.3.1.3
Soustrayez de .
Étape 6.1.1.3.3.3.3.2
Déplacez à gauche de .
Étape 6.1.1.3.3.3.3.3
Placez le signe moins devant la fraction.
Étape 6.1.1.3.3.4
Simplifiez le numérateur.
Étape 6.1.1.3.3.4.1
Factorisez à partir de .
Étape 6.1.1.3.3.4.1.1
Remettez dans l’ordre et .
Étape 6.1.1.3.3.4.1.2
Factorisez à partir de .
Étape 6.1.1.3.3.4.1.3
Factorisez à partir de .
Étape 6.1.1.3.3.4.1.4
Factorisez à partir de .
Étape 6.1.1.3.3.4.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.1.1.3.3.4.3
Multipliez par .
Étape 6.1.1.3.3.4.4
Associez les numérateurs sur le dénominateur commun.
Étape 6.1.1.3.3.4.5
Multipliez par .
Étape 6.1.1.3.3.5
Multipliez le numérateur par la réciproque du dénominateur.
Étape 6.1.1.3.3.6
Multipliez par .
Étape 6.1.1.3.3.7
Déplacez à gauche de .
Étape 6.1.2
Regroupez des facteurs.
Étape 6.1.3
Multipliez les deux côtés par .
Étape 6.1.4
Simplifiez
Étape 6.1.4.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 6.1.4.2
Multipliez par .
Étape 6.1.4.3
Annulez le facteur commun de .
Étape 6.1.4.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 6.1.4.3.2
Factorisez à partir de .
Étape 6.1.4.3.3
Factorisez à partir de .
Étape 6.1.4.3.4
Annulez le facteur commun.
Étape 6.1.4.3.5
Réécrivez l’expression.
Étape 6.1.4.4
Annulez le facteur commun de .
Étape 6.1.4.4.1
Annulez le facteur commun.
Étape 6.1.4.4.2
Réécrivez l’expression.
Étape 6.1.5
Réécrivez l’équation.
Étape 6.2
Intégrez les deux côtés.
Étape 6.2.1
Définissez une intégrale de chaque côté.
Étape 6.2.2
Intégrez le côté gauche.
Étape 6.2.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6.2.2.2
Laissez . Alors , donc . Réécrivez avec et .
Étape 6.2.2.2.1
Laissez . Déterminez .
Étape 6.2.2.2.1.1
Différenciez .
Étape 6.2.2.2.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 6.2.2.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 6.2.2.2.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 6.2.2.2.1.5
Additionnez et .
Étape 6.2.2.2.2
Réécrivez le problème en utilisant et .
Étape 6.2.2.3
Simplifiez
Étape 6.2.2.3.1
Multipliez par .
Étape 6.2.2.3.2
Déplacez à gauche de .
Étape 6.2.2.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6.2.2.5
Simplifiez
Étape 6.2.2.5.1
Associez et .
Étape 6.2.2.5.2
Annulez le facteur commun de .
Étape 6.2.2.5.2.1
Annulez le facteur commun.
Étape 6.2.2.5.2.2
Réécrivez l’expression.
Étape 6.2.2.5.3
Multipliez par .
Étape 6.2.2.6
L’intégrale de par rapport à est .
Étape 6.2.2.7
Remplacez toutes les occurrences de par .
Étape 6.2.3
Intégrez le côté droit.
Étape 6.2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 6.2.3.2
L’intégrale de par rapport à est .
Étape 6.2.3.3
Simplifiez
Étape 6.2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 6.3
Résolvez .
Étape 6.3.1
Déplacez tous les termes contenant un logarithme du côté gauche de l’équation.
Étape 6.3.2
Utilisez la propriété du produit des logarithmes, .
Étape 6.3.3
Pour multiplier des valeurs absolues, multipliez les termes à l’intérieur de chaque valeur absolue.
Étape 6.3.4
Appliquez la propriété distributive.
Étape 6.3.5
Multipliez par .
Étape 6.3.6
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 6.3.7
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 6.3.8
Résolvez .
Étape 6.3.8.1
Réécrivez l’équation comme .
Étape 6.3.8.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 6.3.8.3
Soustrayez des deux côtés de l’équation.
Étape 6.3.8.4
Divisez chaque terme dans par et simplifiez.
Étape 6.3.8.4.1
Divisez chaque terme dans par .
Étape 6.3.8.4.2
Simplifiez le côté gauche.
Étape 6.3.8.4.2.1
Annulez le facteur commun de .
Étape 6.3.8.4.2.1.1
Annulez le facteur commun.
Étape 6.3.8.4.2.1.2
Divisez par .
Étape 6.3.8.4.3
Simplifiez le côté droit.
Étape 6.3.8.4.3.1
Annulez le facteur commun de .
Étape 6.3.8.4.3.1.1
Annulez le facteur commun.
Étape 6.3.8.4.3.1.2
Divisez par .
Étape 6.3.8.5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6.3.8.6
Simplifiez .
Étape 6.3.8.6.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.3.8.6.2
Associez et .
Étape 6.3.8.6.3
Associez les numérateurs sur le dénominateur commun.
Étape 6.3.8.6.4
Réécrivez comme .
Étape 6.3.8.6.5
Multipliez par .
Étape 6.3.8.6.6
Associez et simplifiez le dénominateur.
Étape 6.3.8.6.6.1
Multipliez par .
Étape 6.3.8.6.6.2
Élevez à la puissance .
Étape 6.3.8.6.6.3
Élevez à la puissance .
Étape 6.3.8.6.6.4
Utilisez la règle de puissance pour associer des exposants.
Étape 6.3.8.6.6.5
Additionnez et .
Étape 6.3.8.6.6.6
Réécrivez comme .
Étape 6.3.8.6.6.6.1
Utilisez pour réécrire comme .
Étape 6.3.8.6.6.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.3.8.6.6.6.3
Associez et .
Étape 6.3.8.6.6.6.4
Annulez le facteur commun de .
Étape 6.3.8.6.6.6.4.1
Annulez le facteur commun.
Étape 6.3.8.6.6.6.4.2
Réécrivez l’expression.
Étape 6.3.8.6.6.6.5
Simplifiez
Étape 6.3.8.6.7
Associez en utilisant la règle de produit pour les radicaux.
Étape 6.3.8.6.8
Remettez les facteurs dans l’ordre dans .
Étape 6.4
Simplifiez la constante d’intégration.
Étape 7
Remplacez par .
Étape 8
Étape 8.1
Multipliez les deux côtés par .
Étape 8.2
Simplifiez le côté gauche.
Étape 8.2.1
Annulez le facteur commun de .
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Réécrivez l’expression.