Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Différenciez par rapport à .
Étape 1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Multipliez par .
Étape 1.4
Évaluez .
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4.3
Multipliez par .
Étape 1.5
Différenciez en utilisant la règle de la constante.
Étape 1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.5.2
Additionnez et .
Étape 2
Étape 2.1
Différenciez par rapport à .
Étape 2.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Évaluez .
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4.3
Multipliez par .
Étape 3
Étape 3.1
Remplacez par et par .
Étape 3.2
Comme le côté gauche n’est pas égal au côté droit, l’équation n’est pas une identité.
n’est pas une identité.
n’est pas une identité.
Étape 4
Étape 4.1
Remplacez par .
Étape 4.2
Remplacez par .
Étape 4.3
Remplacez par .
Étape 4.3.1
Remplacez par .
Étape 4.3.2
Simplifiez le numérateur.
Étape 4.3.2.1
Appliquez la propriété distributive.
Étape 4.3.2.2
Multipliez par .
Étape 4.3.2.3
Multipliez par .
Étape 4.3.2.4
Soustrayez de .
Étape 4.3.2.5
Soustrayez de .
Étape 4.3.2.6
Additionnez et .
Étape 4.3.3
Factorisez à partir de .
Étape 4.3.3.1
Factorisez à partir de .
Étape 4.3.3.2
Factorisez à partir de .
Étape 4.3.3.3
Factorisez à partir de .
Étape 4.3.4
Annulez le facteur commun à et .
Étape 4.3.4.1
Factorisez à partir de .
Étape 4.3.4.2
Annulez les facteurs communs.
Étape 4.3.4.2.1
Factorisez à partir de .
Étape 4.3.4.2.2
Annulez le facteur commun.
Étape 4.3.4.2.3
Réécrivez l’expression.
Étape 4.3.5
Annulez le facteur commun à et .
Étape 4.3.5.1
Factorisez à partir de .
Étape 4.3.5.2
Annulez les facteurs communs.
Étape 4.3.5.2.1
Annulez le facteur commun.
Étape 4.3.5.2.2
Réécrivez l’expression.
Étape 4.3.6
Placez le signe moins devant la fraction.
Étape 4.4
Déterminez le facteur d’intégration .
Étape 5
Étape 5.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.3
Multipliez par .
Étape 5.4
Laissez . Alors , donc . Réécrivez avec et .
Étape 5.4.1
Laissez . Déterminez .
Étape 5.4.1.1
Différenciez .
Étape 5.4.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 5.4.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 5.4.1.4
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 5.4.1.5
Additionnez et .
Étape 5.4.2
Réécrivez le problème en utilisant et .
Étape 5.5
Simplifiez
Étape 5.5.1
Multipliez par .
Étape 5.5.2
Déplacez à gauche de .
Étape 5.6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 5.7
Simplifiez
Étape 5.7.1
Associez et .
Étape 5.7.2
Annulez le facteur commun à et .
Étape 5.7.2.1
Factorisez à partir de .
Étape 5.7.2.2
Annulez les facteurs communs.
Étape 5.7.2.2.1
Factorisez à partir de .
Étape 5.7.2.2.2
Annulez le facteur commun.
Étape 5.7.2.2.3
Réécrivez l’expression.
Étape 5.7.2.2.4
Divisez par .
Étape 5.8
L’intégrale de par rapport à est .
Étape 5.9
Simplifiez
Étape 5.10
Remplacez toutes les occurrences de par .
Étape 5.11
Simplifiez chaque terme.
Étape 5.11.1
Simplifiez en déplaçant dans le logarithme.
Étape 5.11.2
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.11.3
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 6
Étape 6.1
Multipliez par .
Étape 6.2
Multipliez par .
Étape 6.3
Multipliez par .
Étape 6.4
Multipliez par .
Étape 6.5
Factorisez à partir de .
Étape 6.5.1
Factorisez à partir de .
Étape 6.5.2
Factorisez à partir de .
Étape 6.5.3
Factorisez à partir de .
Étape 6.6
Annulez le facteur commun de .
Étape 6.6.1
Annulez le facteur commun.
Étape 6.6.2
Divisez par .
Étape 7
Définissez égal à l’intégrale de .
Étape 8
Étape 8.1
Appliquez la règle de la constante.
Étape 9
Comme l’intégrale de contient une constante d’intégration, nous pouvons remplacer par .
Étape 10
Définissez .
Étape 11
Étape 11.1
Différenciez par rapport à .
Étape 11.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 11.3
Évaluez .
Étape 11.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.3.3
Multipliez par .
Étape 11.4
Différenciez à l’aide de la règle de fonction qui indique que la dérivée de est .
Étape 11.5
Remettez les termes dans l’ordre.
Étape 12
Étape 12.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 12.1.1
Soustrayez des deux côtés de l’équation.
Étape 12.1.2
Simplifiez chaque terme.
Étape 12.1.2.1
Divisez la fraction en deux fractions.
Étape 12.1.2.2
Simplifiez chaque terme.
Étape 12.1.2.2.1
Factorisez à partir de .
Étape 12.1.2.2.1.1
Factorisez à partir de .
Étape 12.1.2.2.1.2
Factorisez à partir de .
Étape 12.1.2.2.1.3
Factorisez à partir de .
Étape 12.1.2.2.2
Annulez le facteur commun de .
Étape 12.1.2.2.2.1
Annulez le facteur commun.
Étape 12.1.2.2.2.2
Divisez par .
Étape 12.1.3
Associez les termes opposés dans .
Étape 12.1.3.1
Soustrayez de .
Étape 12.1.3.2
Additionnez et .
Étape 13
Étape 13.1
Intégrez les deux côtés de .
Étape 13.2
Évaluez .
Étape 13.3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 13.4
Remettez dans l’ordre et .
Étape 13.5
Réécrivez comme .
Étape 13.6
L’intégrale de par rapport à est .
Étape 13.7
Simplifiez
Étape 14
Remplacez par dans .