Calcul infinitésimal Exemples

Résoudre l''équation différentielle (1+x)^2(dy)/(dx)=(1+y)^2
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Divisez par .
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Associez.
Étape 1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Annulez le facteur commun.
Étape 1.3.2.2
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Différenciez .
Étape 2.2.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2.1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.1.1.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.2.1.1.5
Additionnez et .
Étape 2.2.1.2
Réécrivez le problème en utilisant et .
Étape 2.2.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.2.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.2.2.2
Multipliez par .
Étape 2.2.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.2.4
Réécrivez comme .
Étape 2.2.5
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Laissez . Puis . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1.1
Différenciez .
Étape 2.3.1.1.2
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.3.1.1.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.1.1.4
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 2.3.1.1.5
Additionnez et .
Étape 2.3.1.2
Réécrivez le problème en utilisant et .
Étape 2.3.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 2.3.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.3.2.2.2
Multipliez par .
Étape 2.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.4
Réécrivez comme .
Étape 2.3.5
Remplacez toutes les occurrences de par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 3.1.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 3.1.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 3.1.4
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 3.1.5
Le facteur pour est lui-même.
se produit fois.
Étape 3.1.6
Le facteur pour est lui-même.
se produit fois.
Étape 3.1.7
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Multipliez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2.1.2
Annulez le facteur commun.
Étape 3.2.2.1.3
Réécrivez l’expression.
Étape 3.2.2.2
Appliquez la propriété distributive.
Étape 3.2.2.3
Multipliez par .
Étape 3.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.3.1.1.2
Factorisez à partir de .
Étape 3.2.3.1.1.3
Annulez le facteur commun.
Étape 3.2.3.1.1.4
Réécrivez l’expression.
Étape 3.2.3.1.2
Appliquez la propriété distributive.
Étape 3.2.3.1.3
Multipliez par .
Étape 3.2.3.1.4
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.4.1
Appliquez la propriété distributive.
Étape 3.2.3.1.4.2
Appliquez la propriété distributive.
Étape 3.2.3.1.4.3
Appliquez la propriété distributive.
Étape 3.2.3.1.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.3.1.5.1
Multipliez par .
Étape 3.2.3.1.5.2
Multipliez par .
Étape 3.2.3.1.5.3
Multipliez par .
Étape 3.2.3.1.6
Appliquez la propriété distributive.
Étape 3.2.3.1.7
Multipliez par .
Étape 3.3
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.3.2.2
Soustrayez des deux côtés de l’équation.
Étape 3.3.2.3
Soustrayez des deux côtés de l’équation.
Étape 3.3.2.4
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.4.1
Additionnez et .
Étape 3.3.2.4.2
Additionnez et .
Étape 3.3.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.3.1
Factorisez à partir de .
Étape 3.3.3.2
Factorisez à partir de .
Étape 3.3.3.3
Factorisez à partir de .
Étape 3.3.3.4
Factorisez à partir de .
Étape 3.3.3.5
Factorisez à partir de .
Étape 3.3.4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.1
Divisez chaque terme dans par .
Étape 3.3.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.2.1.1
Annulez le facteur commun.
Étape 3.3.4.2.1.2
Divisez par .
Étape 3.3.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.3.1.1
Placez le signe moins devant la fraction.
Étape 3.3.4.3.1.2
Placez le signe moins devant la fraction.
Étape 3.3.4.3.1.3
Placez le signe moins devant la fraction.
Étape 3.3.4.3.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.4.3.2.1
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.4.3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 3.3.4.3.2.3
Factorisez à partir de .
Étape 3.3.4.3.2.4
Factorisez à partir de .
Étape 3.3.4.3.2.5
Factorisez à partir de .
Étape 3.3.4.3.2.6
Factorisez à partir de .
Étape 3.3.4.3.2.7
Réécrivez comme .
Étape 3.3.4.3.2.8
Réécrivez comme .
Étape 3.3.4.3.2.9
Factorisez à partir de .
Étape 3.3.4.3.2.10
Factorisez à partir de .
Étape 3.3.4.3.2.11
Factorisez à partir de .
Étape 3.3.4.3.2.12
Factorisez à partir de .
Étape 3.3.4.3.2.13
Annulez le facteur commun.
Étape 3.3.4.3.2.14
Réécrivez l’expression.
Étape 4
Simplifiez la constante d’intégration.