Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par et simplifiez.
Étape 1.1.1
Divisez chaque terme dans par .
Étape 1.1.2
Simplifiez le côté gauche.
Étape 1.1.2.1
Annulez le facteur commun de .
Étape 1.1.2.1.1
Annulez le facteur commun.
Étape 1.1.2.1.2
Divisez par .
Étape 1.1.3
Simplifiez le côté droit.
Étape 1.1.3.1
Multipliez le numérateur par la réciproque du dénominateur.
Étape 1.1.3.2
Associez.
Étape 1.1.3.3
Multipliez par .
Étape 1.2
Regroupez des facteurs.
Étape 1.3
Multipliez les deux côtés par .
Étape 1.4
Simplifiez
Étape 1.4.1
Associez.
Étape 1.4.2
Annulez le facteur commun de .
Étape 1.4.2.1
Factorisez à partir de .
Étape 1.4.2.2
Annulez le facteur commun.
Étape 1.4.2.3
Réécrivez l’expression.
Étape 1.4.3
Multipliez par .
Étape 1.5
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
L’intégrale de par rapport à est .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Appliquez la propriété distributive.
Étape 3.3
Simplifiez en déplaçant dans le logarithme.
Étape 3.4
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.5
Retirez la valeur absolue dans car les élévations à des puissances paires sont toujours positives.
Étape 3.6
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.