Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Factorisez.
Étape 1.1.1
Séparez les fractions.
Étape 1.1.2
Convertissez de à .
Étape 1.1.3
Divisez par .
Étape 1.1.4
Multipliez par .
Étape 1.1.5
Simplifiez chaque terme.
Étape 1.1.5.1
Séparez les fractions.
Étape 1.1.5.2
Convertissez de à .
Étape 1.1.5.3
Divisez par .
Étape 1.1.6
Factorisez à partir de .
Étape 1.1.6.1
Factorisez à partir de .
Étape 1.1.6.2
Factorisez à partir de .
Étape 1.1.6.3
Factorisez à partir de .
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Annulez le facteur commun de .
Étape 1.3.1
Annulez le facteur commun.
Étape 1.3.2
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Simplifiez
Étape 2.2.1.1
Réécrivez en termes de sinus et de cosinus.
Étape 2.2.1.2
Multipliez par la réciproque de la fraction pour diviser par .
Étape 2.2.1.3
Multipliez par .
Étape 2.2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Appliquez la règle de la constante.
Étape 2.3.4
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Étape 3.1.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.1.2.2
Divisez par .
Étape 3.1.3
Simplifiez le côté droit.
Étape 3.1.3.1
Simplifiez chaque terme.
Étape 3.1.3.1.1
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.2
Réécrivez comme .
Étape 3.1.3.1.3
Associez et .
Étape 3.1.3.1.4
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.5
Réécrivez comme .
Étape 3.1.3.1.6
Multipliez par .
Étape 3.1.3.1.7
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.8
Réécrivez comme .
Étape 3.2
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 4
Simplifiez la constante d’intégration.