Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=x/(sin(y))-9/(sin(y))
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Séparez les fractions.
Étape 1.1.2
Convertissez de à .
Étape 1.1.3
Divisez par .
Étape 1.1.4
Multipliez par .
Étape 1.1.5
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.5.1
Séparez les fractions.
Étape 1.1.5.2
Convertissez de à .
Étape 1.1.5.3
Divisez par .
Étape 1.1.6
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.6.1
Factorisez à partir de .
Étape 1.1.6.2
Factorisez à partir de .
Étape 1.1.6.3
Factorisez à partir de .
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Annulez le facteur commun.
Étape 1.3.2
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Réécrivez en termes de sinus et de cosinus.
Étape 2.2.1.2
Multipliez par la réciproque de la fraction pour diviser par .
Étape 2.2.1.3
Multipliez par .
Étape 2.2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Appliquez la règle de la constante.
Étape 2.3.4
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Divisez chaque terme dans par .
Étape 3.1.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 3.1.2.2
Divisez par .
Étape 3.1.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.3.1.1
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.2
Réécrivez comme .
Étape 3.1.3.1.3
Associez et .
Étape 3.1.3.1.4
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.5
Réécrivez comme .
Étape 3.1.3.1.6
Multipliez par .
Étape 3.1.3.1.7
Déplacez le moins un du dénominateur de .
Étape 3.1.3.1.8
Réécrivez comme .
Étape 3.2
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 4
Simplifiez la constante d’intégration.