Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Simplifiez
Étape 1.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.3.2
Associez et .
Étape 1.3.3
Annulez le facteur commun de .
Étape 1.3.3.1
Factorisez à partir de .
Étape 1.3.3.2
Annulez le facteur commun.
Étape 1.3.3.3
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Simplifiez l’expression.
Étape 2.2.1.1
Inversez l’exposant de et placez-le hors du dénominateur.
Étape 2.2.1.2
Simplifiez
Étape 2.2.1.2.1
Multipliez les exposants dans .
Étape 2.2.1.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.1.2
Multipliez .
Étape 2.2.1.2.1.2.1
Multipliez par .
Étape 2.2.1.2.1.2.2
Multipliez par .
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Simplifiez
Étape 2.3.3.2.1
Associez et .
Étape 2.3.3.2.2
Annulez le facteur commun à et .
Étape 2.3.3.2.2.1
Factorisez à partir de .
Étape 2.3.3.2.2.2
Annulez les facteurs communs.
Étape 2.3.3.2.2.2.1
Factorisez à partir de .
Étape 2.3.3.2.2.2.2
Annulez le facteur commun.
Étape 2.3.3.2.2.2.3
Réécrivez l’expression.
Étape 2.3.3.2.2.2.4
Divisez par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 3.2
Développez le côté gauche.
Étape 3.2.1
Développez en déplaçant hors du logarithme.
Étape 3.2.2
Le logarithme naturel de est .
Étape 3.2.3
Multipliez par .