Calcul infinitésimal Exemples

Résoudre l''équation différentielle e^(-y)sin(x)-(dy)/(dx)cos(x)^2=0
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Soustrayez des deux côtés de l’équation.
Étape 1.1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.1
Divisez chaque terme dans par .
Étape 1.1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.1.2.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.2.2.1
Annulez le facteur commun.
Étape 1.1.2.2.2.2
Divisez par .
Étape 1.1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 1.1.2.3.2
Factorisez à partir de .
Étape 1.1.2.3.3
Séparez les fractions.
Étape 1.1.2.3.4
Convertissez de à .
Étape 1.1.2.3.5
Séparez les fractions.
Étape 1.1.2.3.6
Convertissez de à .
Étape 1.1.2.3.7
Divisez par .
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Factorisez à partir de .
Étape 1.3.2
Annulez le facteur commun.
Étape 1.3.3
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Inversez l’exposant de et placez-le hors du dénominateur.
Étape 2.2.1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1.2.1
Multipliez par .
Étape 2.2.1.2.1.2.2
Multipliez par .
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
L’intégrale de par rapport à est .
Étape 2.3
Comme la dérivée de est , l’intégrale de est .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 3.2
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Développez en déplaçant hors du logarithme.
Étape 3.2.2
Le logarithme naturel de est .
Étape 3.2.3
Multipliez par .