Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=-x/(2y)
Étape 1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Factorisez à partir de .
Étape 1.2.2.2
Factorisez à partir de .
Étape 1.2.2.3
Annulez le facteur commun.
Étape 1.2.2.4
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.1
Réécrivez comme .
Étape 2.3.4.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.2.1
Multipliez par .
Étape 2.3.4.2.2
Multipliez par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Associez et .
Étape 3.2.2.1.2
Appliquez la propriété distributive.
Étape 3.2.2.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2.1.3.2
Factorisez à partir de .
Étape 3.2.2.1.3.3
Annulez le facteur commun.
Étape 3.2.2.1.3.4
Réécrivez l’expression.
Étape 3.2.2.1.4
Placez le signe moins devant la fraction.
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.4.2
Associez et .
Étape 3.4.3
Associez les numérateurs sur le dénominateur commun.
Étape 3.4.4
Multipliez par .
Étape 3.4.5
Réécrivez comme .
Étape 3.4.6
Multipliez par .
Étape 3.4.7
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.7.1
Multipliez par .
Étape 3.4.7.2
Élevez à la puissance .
Étape 3.4.7.3
Élevez à la puissance .
Étape 3.4.7.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.4.7.5
Additionnez et .
Étape 3.4.7.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.7.6.1
Utilisez pour réécrire comme .
Étape 3.4.7.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.4.7.6.3
Associez et .
Étape 3.4.7.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.7.6.4.1
Annulez le facteur commun.
Étape 3.4.7.6.4.2
Réécrivez l’expression.
Étape 3.4.7.6.5
Évaluez l’exposant.
Étape 3.4.8
Associez en utilisant la règle de produit pour les radicaux.
Étape 3.4.9
Remettez les facteurs dans l’ordre dans .
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Simplifiez la constante d’intégration.