Entrer un problème...
Calcul infinitésimal Exemples
,
Étape 1
Étape 1.1
Factorisez à partir de .
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Factorisez à partir de .
Étape 1.1.3
Factorisez à partir de .
Étape 1.2
Multipliez les deux côtés par .
Étape 1.3
Annulez le facteur commun de .
Étape 1.3.1
Annulez le facteur commun.
Étape 1.3.2
Réécrivez l’expression.
Étape 1.4
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
L’intégrale de par rapport à est .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Séparez l’intégrale unique en plusieurs intégrales.
Étape 2.3.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.4
Appliquez la règle de la constante.
Étape 2.3.5
Simplifiez
Étape 2.3.5.1
Associez et .
Étape 2.3.5.2
Simplifiez
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.2
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.3
Résolvez .
Étape 3.3.1
Réécrivez l’équation comme .
Étape 3.3.2
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 4
Étape 4.1
Réécrivez comme .
Étape 4.2
Remettez dans l’ordre et .
Étape 4.3
Combinez des constantes avec le plus ou le moins.
Étape 5
Utilisez la condition initiale pour déterminer la valeur de en remplaçant par et par dans .
Étape 6
Étape 6.1
Réécrivez l’équation comme .
Étape 6.2
Simplifiez .
Étape 6.2.1
Simplifiez chaque terme.
Étape 6.2.1.1
Un à n’importe quelle puissance est égal à un.
Étape 6.2.1.2
Multipliez par .
Étape 6.2.2
Simplifiez l’expression.
Étape 6.2.2.1
Soustrayez de .
Étape 6.2.2.2
Tout ce qui est élevé à la puissance est .
Étape 6.2.2.3
Multipliez par .
Étape 7
Étape 7.1
Remplacez par .