Calcul infinitésimal Exemples

Résoudre l''équation différentielle e^xe^ydx-e^(-2y)dy=0
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Multipliez les deux côtés par .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2
Associez et .
Étape 3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Factorisez à partir de .
Étape 3.3.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Multipliez par .
Étape 3.3.2.2
Annulez le facteur commun.
Étape 3.3.2.3
Réécrivez l’expression.
Étape 3.3.2.4
Divisez par .
Étape 3.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.5.2
Factorisez à partir de .
Étape 3.5.3
Annulez le facteur commun.
Étape 3.5.4
Réécrivez l’expression.
Étape 3.6
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.6.1
Utilisez la règle de puissance pour associer des exposants.
Étape 3.6.2
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.6.2.1
Additionnez et .
Étape 3.6.2.2
Additionnez et .
Étape 4
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez une intégrale de chaque côté.
Étape 4.2
Intégrez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.2.2
Laissez . Alors , donc . Réécrivez avec et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Laissez . Déterminez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1.1
Différenciez .
Étape 4.2.2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.2.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est .
Étape 4.2.2.1.4
Multipliez par .
Étape 4.2.2.2
Réécrivez le problème en utilisant et .
Étape 4.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Placez le signe moins devant la fraction.
Étape 4.2.3.2
Associez et .
Étape 4.2.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.2.5
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Multipliez par .
Étape 4.2.5.2
Multipliez par .
Étape 4.2.6
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.2.7
L’intégrale de par rapport à est .
Étape 4.2.8
Simplifiez
Étape 4.2.9
Remplacez toutes les occurrences de par .
Étape 4.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.3.2
L’intégrale de par rapport à est .
Étape 4.3.3
Simplifiez
Étape 4.4
Regroupez la constante d’intégration du côté droit comme .
Étape 5
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Multipliez les deux côtés de l’équation par .
Étape 5.2
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.1
Associez et .
Étape 5.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1.1.2.1
Annulez le facteur commun.
Étape 5.2.1.1.2.2
Réécrivez l’expression.
Étape 5.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1.1
Appliquez la propriété distributive.
Étape 5.2.2.1.2
Multipliez par .
Étape 5.3
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 5.4
Développez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.4.1
Développez en déplaçant hors du logarithme.
Étape 5.4.2
Le logarithme naturel de est .
Étape 5.4.3
Multipliez par .
Étape 5.5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.1
Divisez chaque terme dans par .
Étape 5.5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.5.2.1.1
Annulez le facteur commun.
Étape 5.5.2.1.2
Divisez par .
Étape 5.5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.5.3.1
Placez le signe moins devant la fraction.
Étape 6
Simplifiez la constante d’intégration.