Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dx)=(xsin(x)-ycos(x))/(sin(x))
Étape 1
Réécrivez l’équation différentielle comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez l’équation comme .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Divisez la fraction en deux fractions.
Étape 1.1.2
Soustrayez des deux côtés de l’équation.
Étape 1.2
Factorisez à partir de .
Étape 1.3
Remettez dans l’ordre et .
Étape 2
Le facteur d’intégration est défini par la formule , où .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez l’intégration.
Étape 2.2
Intégrez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Réécrivez comme .
Étape 2.2.1.2
Placez le signe moins devant la fraction.
Étape 2.2.1.3
Convertissez de à .
Étape 2.2.1.4
Multipliez par .
Étape 2.2.1.5
Multipliez par .
Étape 2.2.2
L’intégrale de par rapport à est .
Étape 2.3
Retirez la constante d’intégration.
Étape 2.4
L’élévation à une puissance et log sont des fonctions inverses.
Étape 3
Multipliez chaque terme par le facteur d’intégration .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme par .
Étape 3.2
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Factorisez à partir de .
Étape 3.2.2.2
Annulez le facteur commun.
Étape 3.2.2.3
Réécrivez l’expression.
Étape 3.2.3
Multipliez par .
Étape 3.2.4
Multipliez par .
Étape 3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Annulez le facteur commun.
Étape 3.3.2
Réécrivez l’expression.
Étape 3.4
Remettez les facteurs dans l’ordre dans .
Étape 4
Réécrivez le côté gauche suite à la différenciation d’un produit.
Étape 5
Définissez une intégrale de chaque côté.
Étape 6
Intégrez le côté gauche.
Étape 7
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Intégrez par parties en utilisant la formule , où et .
Étape 7.2
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 7.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.3.1
Multipliez par .
Étape 7.3.2
Multipliez par .
Étape 7.4
L’intégrale de par rapport à est .
Étape 7.5
Réécrivez comme .
Étape 8
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Divisez chaque terme dans par .
Étape 8.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1.1
Annulez le facteur commun.
Étape 8.2.1.2
Divisez par .
Étape 8.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.1
Séparez les fractions.
Étape 8.3.1.2
Convertissez de à .
Étape 8.3.1.3
Divisez par .
Étape 8.3.1.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.3.1.4.1
Annulez le facteur commun.
Étape 8.3.1.4.2
Réécrivez l’expression.
Étape 8.3.1.5
Séparez les fractions.
Étape 8.3.1.6
Convertissez de à .
Étape 8.3.1.7
Divisez par .