Calcul infinitésimal Exemples

Résoudre l''équation différentielle (dy)/(dt)=y/t
Étape 1
Laissez . Remplacez par .
Étape 2
Résolvez pour .
Étape 3
Utilisez la règle de produit pour déterminer la dérivée de par rapport à .
Étape 4
Remplacez par .
Étape 5
Résolvez l’équation différentielle remplacée.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Séparez les variables.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.1.1
Soustrayez des deux côtés de l’équation.
Étape 5.1.1.1.2
Soustrayez de .
Étape 5.1.1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.2.1
Divisez chaque terme dans par .
Étape 5.1.1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.2.2.1.1
Annulez le facteur commun.
Étape 5.1.1.2.2.1.2
Divisez par .
Étape 5.1.1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1.2.3.1
Divisez par .
Étape 5.1.2
Réécrivez l’équation.
Étape 5.2
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Définissez une intégrale de chaque côté.
Étape 5.2.2
Appliquez la règle de la constante.
Étape 5.2.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.3.1
L’intégrale de par rapport à est .
Étape 5.2.3.2
Additionnez et .
Étape 5.2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 6
Remplacez par .
Étape 7
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Multipliez les deux côtés par .
Étape 7.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 7.2.1.1
Annulez le facteur commun.
Étape 7.2.1.2
Réécrivez l’expression.