Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Multipliez les deux côtés par .
Étape 3
Étape 3.1
Annulez le facteur commun de .
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Annulez le facteur commun.
Étape 3.1.3
Réécrivez l’expression.
Étape 3.2
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3
Annulez le facteur commun de .
Étape 3.3.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.2
Factorisez à partir de .
Étape 3.3.3
Factorisez à partir de .
Étape 3.3.4
Annulez le facteur commun.
Étape 3.3.5
Réécrivez l’expression.
Étape 3.4
Associez et .
Étape 3.5
Placez le signe moins devant la fraction.
Étape 4
Étape 4.1
Définissez une intégrale de chaque côté.
Étape 4.2
Intégrez le côté gauche.
Étape 4.2.1
Appliquez les règles de base des exposants.
Étape 4.2.1.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 4.2.1.2
Multipliez les exposants dans .
Étape 4.2.1.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.1.2.2
Multipliez par .
Étape 4.2.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 4.2.3
Réécrivez comme .
Étape 4.3
Intégrez le côté droit.
Étape 4.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.3.2
Simplifiez l’expression.
Étape 4.3.2.1
Inversez l’exposant de et placez-le hors du dénominateur.
Étape 4.3.2.2
Multipliez les exposants dans .
Étape 4.3.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.2.2.2
Déplacez à gauche de .
Étape 4.3.2.2.3
Réécrivez comme .
Étape 4.3.3
Intégrez par parties en utilisant la formule , où et .
Étape 4.3.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.3.5
Simplifiez
Étape 4.3.5.1
Multipliez par .
Étape 4.3.5.2
Multipliez par .
Étape 4.3.6
Laissez . Alors , donc . Réécrivez avec et .
Étape 4.3.6.1
Laissez . Déterminez .
Étape 4.3.6.1.1
Différenciez .
Étape 4.3.6.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.3.6.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.3.6.1.4
Multipliez par .
Étape 4.3.6.2
Réécrivez le problème en utilisant et .
Étape 4.3.7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.3.8
L’intégrale de par rapport à est .
Étape 4.3.9
Réécrivez comme .
Étape 4.3.10
Remplacez toutes les occurrences de par .
Étape 4.3.11
Simplifiez
Étape 4.3.11.1
Appliquez la propriété distributive.
Étape 4.3.11.2
Multipliez .
Étape 4.3.11.2.1
Multipliez par .
Étape 4.3.11.2.2
Multipliez par .
Étape 4.3.11.3
Multipliez .
Étape 4.3.11.3.1
Multipliez par .
Étape 4.3.11.3.2
Multipliez par .
Étape 4.3.12
Remettez les termes dans l’ordre.
Étape 4.4
Regroupez la constante d’intégration du côté droit comme .
Étape 5
Étape 5.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 5.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 5.1.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 5.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 5.2.1
Multipliez chaque terme dans par .
Étape 5.2.2
Simplifiez le côté gauche.
Étape 5.2.2.1
Annulez le facteur commun de .
Étape 5.2.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 5.2.2.1.2
Annulez le facteur commun.
Étape 5.2.2.1.3
Réécrivez l’expression.
Étape 5.2.3
Simplifiez le côté droit.
Étape 5.2.3.1
Remettez les facteurs dans l’ordre dans .
Étape 5.3
Résolvez l’équation.
Étape 5.3.1
Réécrivez l’équation comme .
Étape 5.3.2
Factorisez à partir de .
Étape 5.3.2.1
Factorisez à partir de .
Étape 5.3.2.2
Factorisez à partir de .
Étape 5.3.2.3
Factorisez à partir de .
Étape 5.3.2.4
Factorisez à partir de .
Étape 5.3.2.5
Factorisez à partir de .
Étape 5.3.3
Divisez chaque terme dans par et simplifiez.
Étape 5.3.3.1
Divisez chaque terme dans par .
Étape 5.3.3.2
Simplifiez le côté gauche.
Étape 5.3.3.2.1
Annulez le facteur commun de .
Étape 5.3.3.2.1.1
Annulez le facteur commun.
Étape 5.3.3.2.1.2
Divisez par .
Étape 5.3.3.3
Simplifiez le côté droit.
Étape 5.3.3.3.1
Placez le signe moins devant la fraction.