Calcul infinitésimal Exemples

Résoudre l''équation différentielle dx-x^2dy=0
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Multipliez les deux côtés par .
Étape 3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.2
Annulez le facteur commun.
Étape 3.2.3
Réécrivez l’expression.
Étape 3.3
Associez et .
Étape 3.4
Placez le signe moins devant la fraction.
Étape 4
Intégrez les deux côtés.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez une intégrale de chaque côté.
Étape 4.2
Appliquez la règle de la constante.
Étape 4.3
Intégrez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4.3.2
Appliquez les règles de base des exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Retirez du dénominateur en l’élevant à la puissance .
Étape 4.3.2.2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.2.2.2
Multipliez par .
Étape 4.3.3
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 4.3.4
Simplifiez la réponse.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Réécrivez comme .
Étape 4.3.4.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.2.1
Multipliez par .
Étape 4.3.4.2.2
Multipliez par .
Étape 4.4
Regroupez la constante d’intégration du côté droit comme .
Étape 5
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Divisez chaque terme dans par .
Étape 5.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5.2.2
Divisez par .
Étape 5.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1.1
Déplacez le moins un du dénominateur de .
Étape 5.3.1.2
Réécrivez comme .
Étape 5.3.1.3
Déplacez le moins un du dénominateur de .
Étape 5.3.1.4
Réécrivez comme .
Étape 6
Simplifiez la constante d’intégration.