Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Multipliez les deux côtés par .
Étape 1.2
Simplifiez
Étape 1.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.2.2
Associez et .
Étape 1.2.3
Annulez le facteur commun de .
Étape 1.2.3.1
Factorisez à partir de .
Étape 1.2.3.2
Annulez le facteur commun.
Étape 1.2.3.3
Réécrivez l’expression.
Étape 1.3
Réécrivez l’équation.
Étape 2
Étape 2.1
Définissez une intégrale de chaque côté.
Étape 2.2
Intégrez le côté gauche.
Étape 2.2.1
Simplifiez l’expression.
Étape 2.2.1.1
Inversez l’exposant de et placez-le hors du dénominateur.
Étape 2.2.1.2
Simplifiez
Étape 2.2.1.2.1
Multipliez les exposants dans .
Étape 2.2.1.2.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2.1.2
Multipliez par .
Étape 2.2.1.2.2
Multipliez par .
Étape 2.2.2
Laissez . Alors , donc . Réécrivez avec et .
Étape 2.2.2.1
Laissez . Déterminez .
Étape 2.2.2.1.1
Différenciez .
Étape 2.2.2.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.2.1.4
Multipliez par .
Étape 2.2.2.2
Réécrivez le problème en utilisant et .
Étape 2.2.3
Associez et .
Étape 2.2.4
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.2.5
L’intégrale de par rapport à est .
Étape 2.2.6
Simplifiez
Étape 2.2.7
Remplacez toutes les occurrences de par .
Étape 2.3
Intégrez le côté droit.
Étape 2.3.1
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 2.3.2
Selon la règle de puissance, l’intégrale de par rapport à est .
Étape 2.3.3
Simplifiez la réponse.
Étape 2.3.3.1
Réécrivez comme .
Étape 2.3.3.2
Simplifiez
Étape 2.3.3.2.1
Associez et .
Étape 2.3.3.2.2
Annulez le facteur commun à et .
Étape 2.3.3.2.2.1
Factorisez à partir de .
Étape 2.3.3.2.2.2
Annulez les facteurs communs.
Étape 2.3.3.2.2.2.1
Factorisez à partir de .
Étape 2.3.3.2.2.2.2
Annulez le facteur commun.
Étape 2.3.3.2.2.2.3
Réécrivez l’expression.
Étape 2.3.3.2.2.2.4
Divisez par .
Étape 2.4
Regroupez la constante d’intégration du côté droit comme .
Étape 3
Étape 3.1
Multipliez les deux côtés de l’équation par .
Étape 3.2
Simplifiez les deux côtés de l’équation.
Étape 3.2.1
Simplifiez le côté gauche.
Étape 3.2.1.1
Simplifiez .
Étape 3.2.1.1.1
Associez et .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.2
Simplifiez le côté droit.
Étape 3.2.2.1
Simplifiez .
Étape 3.2.2.1.1
Appliquez la propriété distributive.
Étape 3.2.2.1.2
Multipliez par .
Étape 3.3
Prenez le logarithme naturel des deux côtés de l’équation pour retirer la variable de l’exposant.
Étape 3.4
Développez le côté gauche.
Étape 3.4.1
Développez en déplaçant hors du logarithme.
Étape 3.4.2
Le logarithme naturel de est .
Étape 3.4.3
Multipliez par .
Étape 3.5
Divisez chaque terme dans par et simplifiez.
Étape 3.5.1
Divisez chaque terme dans par .
Étape 3.5.2
Simplifiez le côté gauche.
Étape 3.5.2.1
Annulez le facteur commun de .
Étape 3.5.2.1.1
Annulez le facteur commun.
Étape 3.5.2.1.2
Divisez par .
Étape 4
Simplifiez la constante d’intégration.