Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2
Étape 2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2
Différenciez en utilisant la règle d’enchaînement, qui indique que est où et .
Étape 2.2.1
Pour appliquer la règle de la chaîne, définissez comme .
Étape 2.2.2
Différenciez en utilisant la règle exponentielle qui indique que est où =.
Étape 2.2.3
Remplacez toutes les occurrences de par .
Étape 2.3
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.5
Multipliez par .
Étape 2.6
Déplacez à gauche de .
Étape 2.7
Multipliez par .
Étape 2.8
Associez et .
Étape 2.9
Multipliez par .
Étape 2.10
Associez et .
Étape 2.11
Annulez le facteur commun à et .
Étape 2.11.1
Factorisez à partir de .
Étape 2.11.2
Annulez les facteurs communs.
Étape 2.11.2.1
Factorisez à partir de .
Étape 2.11.2.2
Annulez le facteur commun.
Étape 2.11.2.3
Réécrivez l’expression.
Étape 2.11.2.4
Divisez par .
Étape 3
Additionnez et .