Entrer un problème...
Calcul infinitésimal Exemples
Étape 1
Étape 1.1
Laissez . Déterminez .
Étape 1.1.1
Différenciez .
Étape 1.1.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2
Réécrivez le problème en utilisant et .
Étape 2
Étape 2.1
Réécrivez comme .
Étape 2.1.1
Utilisez pour réécrire comme .
Étape 2.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.3
Associez et .
Étape 2.1.4
Annulez le facteur commun à et .
Étape 2.1.4.1
Factorisez à partir de .
Étape 2.1.4.2
Annulez les facteurs communs.
Étape 2.1.4.2.1
Factorisez à partir de .
Étape 2.1.4.2.2
Annulez le facteur commun.
Étape 2.1.4.2.3
Réécrivez l’expression.
Étape 2.1.4.2.4
Divisez par .
Étape 2.2
Associez et .
Étape 3
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 4
Laissez , où . Puis . Depuis , est positif.
Étape 5
Étape 5.1
Simplifiez .
Étape 5.1.1
Appliquez l’identité pythagoricienne.
Étape 5.1.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.2
Simplifiez
Étape 5.2.1
Élevez à la puissance .
Étape 5.2.2
Élevez à la puissance .
Étape 5.2.3
Utilisez la règle de puissance pour associer des exposants.
Étape 5.2.4
Additionnez et .
Étape 6
Utilisez la formule de l’angle moitié pour réécrire en .
Étape 7
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 8
Étape 8.1
Multipliez par .
Étape 8.2
Multipliez par .
Étape 9
Séparez l’intégrale unique en plusieurs intégrales.
Étape 10
Appliquez la règle de la constante.
Étape 11
Étape 11.1
Laissez . Déterminez .
Étape 11.1.1
Différenciez .
Étape 11.1.2
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 11.1.3
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 11.1.4
Multipliez par .
Étape 11.2
Réécrivez le problème en utilisant et .
Étape 12
Associez et .
Étape 13
Comme est constant par rapport à , placez en dehors de l’intégrale.
Étape 14
L’intégrale de par rapport à est .
Étape 15
Simplifiez
Étape 16
Étape 16.1
Remplacez toutes les occurrences de par .
Étape 16.2
Remplacez toutes les occurrences de par .
Étape 16.3
Remplacez toutes les occurrences de par .
Étape 16.4
Remplacez toutes les occurrences de par .
Étape 16.5
Remplacez toutes les occurrences de par .
Étape 17
Étape 17.1
Associez et .
Étape 17.2
Appliquez la propriété distributive.
Étape 17.3
Associez et .
Étape 17.4
Associez.
Étape 17.5
Simplifiez chaque terme.
Étape 17.5.1
Multipliez par .
Étape 17.5.2
Multipliez par .
Étape 18
Remettez les termes dans l’ordre.