Mathématiques de base Exemples

Simplifier ((k^2-5k+4)/(2k-8))÷(3k^2-3k)
Étape 1
Réécrivez la division comme une fraction.
Étape 2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 3
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.2
Écrivez la forme factorisée avec ces entiers.
Étape 4
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Factorisez à partir de .
Étape 4.1.3
Factorisez à partir de .
Étape 4.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Annulez le facteur commun.
Étape 4.2.2
Réécrivez l’expression.
Étape 4.3
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Factorisez à partir de .
Étape 4.3.2
Factorisez à partir de .
Étape 4.3.3
Factorisez à partir de .
Étape 4.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Factorisez à partir de .
Étape 4.4.2
Annulez le facteur commun.
Étape 4.4.3
Réécrivez l’expression.
Étape 4.5
Multipliez par .
Étape 4.6
Multipliez par .