Mathématiques de base Exemples

Simplifier ((b^2-4)/(6b-2)*(3b-1)/(b^2-2b))÷(b+2)
Étape 1
Réécrivez la division comme une fraction.
Étape 2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Étape 2.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 3
Simplifiez en factorisant.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Factorisez à partir de .
Étape 3.1.3
Factorisez à partir de .
Étape 3.2
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Factorisez à partir de .
Étape 3.2.3
Factorisez à partir de .
Étape 4
Multipliez par .
Étape 5
Supprimez les parenthèses inutiles.
Étape 6
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Annulez le facteur commun.
Étape 6.1.2
Réécrivez l’expression.
Étape 6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Annulez le facteur commun.
Étape 6.2.2
Réécrivez l’expression.
Étape 7
Multipliez le numérateur par la réciproque du dénominateur.
Étape 8
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Annulez le facteur commun.
Étape 8.2
Réécrivez l’expression.