Entrer un problème...
Mathématiques de base Exemples
Étape 1
Pour diviser par une fraction, multipliez par sa réciproque.
Étape 2
Étape 2.1
Réécrivez comme .
Étape 2.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 3
Étape 3.1
Factorisez à partir de .
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Factorisez à partir de .
Étape 3.1.3
Factorisez à partir de .
Étape 3.2
Annulez le facteur commun de .
Étape 3.2.1
Annulez le facteur commun.
Étape 3.2.2
Réécrivez l’expression.
Étape 3.3
Annulez le facteur commun à et .
Étape 3.3.1
Factorisez à partir de .
Étape 3.3.2
Factorisez à partir de .
Étape 3.3.3
Factorisez à partir de .
Étape 3.3.4
Annulez les facteurs communs.
Étape 3.3.4.1
Factorisez à partir de .
Étape 3.3.4.2
Factorisez à partir de .
Étape 3.3.4.3
Factorisez à partir de .
Étape 3.3.4.4
Factorisez à partir de .
Étape 3.3.4.5
Factorisez à partir de .
Étape 3.3.4.6
Annulez le facteur commun.
Étape 3.3.4.7
Réécrivez l’expression.
Étape 3.4
Factorisez à partir de .
Étape 3.4.1
Factorisez à partir de .
Étape 3.4.2
Factorisez à partir de .
Étape 3.4.3
Factorisez à partir de .
Étape 4
Étape 4.1
Réécrivez comme .
Étape 4.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 4.3
Réécrivez le polynôme.
Étape 4.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 5
Étape 5.1
Annulez le facteur commun de .
Étape 5.1.1
Factorisez à partir de .
Étape 5.1.2
Annulez le facteur commun.
Étape 5.1.3
Réécrivez l’expression.
Étape 5.2
Annulez le facteur commun de .
Étape 5.2.1
Annulez le facteur commun.
Étape 5.2.2
Réécrivez l’expression.