Mathématiques de base Exemples

Resolva para y -7/(y-2)-(y+2)=4
Étape 1
Factorisez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Placez le signe moins devant la fraction.
Étape 1.2
Appliquez la propriété distributive.
Étape 1.3
Multipliez par .
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Supprimez les parenthèses.
Étape 2.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.1.2
Annulez le facteur commun.
Étape 3.2.1.1.3
Réécrivez l’expression.
Étape 3.2.1.2
Appliquez la propriété distributive.
Étape 3.2.1.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.3.1
Déplacez .
Étape 3.2.1.3.2
Multipliez par .
Étape 3.2.1.4
Multipliez par .
Étape 3.2.1.5
Appliquez la propriété distributive.
Étape 3.2.1.6
Multipliez par .
Étape 3.2.2
Simplifiez en ajoutant des termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Soustrayez de .
Étape 3.2.2.1.2
Additionnez et .
Étape 3.2.2.2
Additionnez et .
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Appliquez la propriété distributive.
Étape 3.3.2
Multipliez par .
Étape 4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3
Additionnez et .
Étape 4.4
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1.1
Factorisez à partir de .
Étape 4.4.1.2
Factorisez à partir de .
Étape 4.4.1.3
Réécrivez comme .
Étape 4.4.1.4
Factorisez à partir de .
Étape 4.4.1.5
Factorisez à partir de .
Étape 4.4.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.2.1
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.4.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.4.2.2
Supprimez les parenthèses inutiles.
Étape 4.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Définissez égal à .
Étape 4.6.2
Ajoutez aux deux côtés de l’équation.
Étape 4.7
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.7.1
Définissez égal à .
Étape 4.7.2
Soustrayez des deux côtés de l’équation.
Étape 4.8
La solution finale est l’ensemble des valeurs qui rendent vraie.