Entrer un problème...
Mathématiques de base Exemples
Étape 1
Supprimez le terme en valeur absolue. Cela crée un du côté droit de l’équation car .
Étape 2
Étape 2.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Soustrayez de .
Étape 2.3
Divisez chaque terme dans par et simplifiez.
Étape 2.3.1
Divisez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Étape 2.3.2.1
Annulez le facteur commun de .
Étape 2.3.2.1.1
Annulez le facteur commun.
Étape 2.3.2.1.2
Divisez par .
Étape 2.3.3
Simplifiez le côté droit.
Étape 2.3.3.1
Annulez le facteur commun à et .
Étape 2.3.3.1.1
Factorisez à partir de .
Étape 2.3.3.1.2
Annulez les facteurs communs.
Étape 2.3.3.1.2.1
Factorisez à partir de .
Étape 2.3.3.1.2.2
Annulez le facteur commun.
Étape 2.3.3.1.2.3
Réécrivez l’expression.
Étape 2.3.3.2
Placez le signe moins devant la fraction.
Étape 2.4
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.5
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 2.5.1
Soustrayez des deux côtés de l’équation.
Étape 2.5.2
Soustrayez de .
Étape 2.6
Divisez chaque terme dans par et simplifiez.
Étape 2.6.1
Divisez chaque terme dans par .
Étape 2.6.2
Simplifiez le côté gauche.
Étape 2.6.2.1
Annulez le facteur commun de .
Étape 2.6.2.1.1
Annulez le facteur commun.
Étape 2.6.2.1.2
Divisez par .
Étape 2.6.3
Simplifiez le côté droit.
Étape 2.6.3.1
Annulez le facteur commun à et .
Étape 2.6.3.1.1
Factorisez à partir de .
Étape 2.6.3.1.2
Annulez les facteurs communs.
Étape 2.6.3.1.2.1
Factorisez à partir de .
Étape 2.6.3.1.2.2
Annulez le facteur commun.
Étape 2.6.3.1.2.3
Réécrivez l’expression.
Étape 2.7
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :