Mathématiques de base Exemples

Resolva para a a = square root of 11^2-6a^2
Étape 1
Comme le radical est du côté droit de l’équation, inversez les côtés afin de le placer du côté gauche de l’équation.
Étape 2
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 3
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Utilisez pour réécrire comme .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.1.2
Élevez à la puissance .
Étape 3.2.1.3
Simplifiez
Étape 4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Soustrayez des deux côtés de l’équation.
Étape 4.1.2
Soustrayez de .
Étape 4.2
Soustrayez des deux côtés de l’équation.
Étape 4.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Divisez chaque terme dans par .
Étape 4.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1.1
Annulez le facteur commun.
Étape 4.3.2.1.2
Divisez par .
Étape 4.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4.5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.1
Réécrivez comme .
Étape 4.5.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.2.1
Réécrivez comme .
Étape 4.5.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.5.3
Multipliez par .
Étape 4.5.4
Associez et simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.5.4.1
Multipliez par .
Étape 4.5.4.2
Élevez à la puissance .
Étape 4.5.4.3
Élevez à la puissance .
Étape 4.5.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 4.5.4.5
Additionnez et .
Étape 4.5.4.6
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.4.6.1
Utilisez pour réécrire comme .
Étape 4.5.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.5.4.6.3
Associez et .
Étape 4.5.4.6.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.5.4.6.4.1
Annulez le facteur commun.
Étape 4.5.4.6.4.2
Réécrivez l’expression.
Étape 4.5.4.6.5
Évaluez l’exposant.
Étape 4.6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Excluez les solutions qui ne rendent pas vrai.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :