Entrer un problème...
Mathématiques de base Exemples
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Supprimez les parenthèses.
Étape 2.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Appliquez la propriété distributive.
Étape 3.2.2
Simplifiez l’expression.
Étape 3.2.2.1
Multipliez par .
Étape 3.2.2.2
Déplacez à gauche de .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Simplifiez chaque terme.
Étape 3.3.1.1
Annulez le facteur commun de .
Étape 3.3.1.1.1
Annulez le facteur commun.
Étape 3.3.1.1.2
Réécrivez l’expression.
Étape 3.3.1.2
Appliquez la propriété distributive.
Étape 3.3.1.3
Multipliez par .
Étape 3.3.2
Soustrayez de .
Étape 4
Étape 4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 4.1.1
Ajoutez aux deux côtés de l’équation.
Étape 4.1.2
Additionnez et .
Étape 4.2
Ajoutez aux deux côtés de l’équation.
Étape 4.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4.5
Simplifiez
Étape 4.5.1
Simplifiez le numérateur.
Étape 4.5.1.1
Élevez à la puissance .
Étape 4.5.1.2
Multipliez .
Étape 4.5.1.2.1
Multipliez par .
Étape 4.5.1.2.2
Multipliez par .
Étape 4.5.1.3
Soustrayez de .
Étape 4.5.1.4
Réécrivez comme .
Étape 4.5.1.4.1
Factorisez à partir de .
Étape 4.5.1.4.2
Réécrivez comme .
Étape 4.5.1.5
Extrayez les termes de sous le radical.
Étape 4.5.2
Multipliez par .
Étape 4.5.3
Simplifiez .
Étape 4.6
La réponse finale est la combinaison des deux solutions.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :