Mathématiques de base Exemples

Resolva para b (16b^2)/9+b^2=1296
Étape 1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.2
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Associez et .
Étape 1.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 1.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Déplacez à gauche de .
Étape 1.3.2
Additionnez et .
Étape 2
Multipliez les deux côtés de l’équation par .
Étape 3
Simplifiez les deux côtés de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.1
Associez.
Étape 3.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.2.1
Annulez le facteur commun.
Étape 3.1.1.2.2
Réécrivez l’expression.
Étape 3.1.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1.3.1
Annulez le facteur commun.
Étape 3.1.1.3.2
Divisez par .
Étape 3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Associez et .
Étape 3.2.1.2
Multipliez par .
Étape 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 5
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Réécrivez comme .
Étape 5.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Réécrivez comme .
Étape 5.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Réécrivez comme .
Étape 5.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Forme de nombre mixte :