Entrer un problème...
Mathématiques de base Exemples
Étape 1
Associez et .
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.6
Le facteur pour est lui-même.
se produit fois.
Étape 2.7
Le facteur pour est lui-même.
se produit fois.
Étape 2.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.9
Multipliez par .
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Annulez le facteur commun de .
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Annulez le facteur commun.
Étape 3.2.1.3
Réécrivez l’expression.
Étape 3.2.2
Élevez à la puissance .
Étape 3.2.3
Élevez à la puissance .
Étape 3.2.4
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.5
Additionnez et .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Annulez le facteur commun de .
Étape 3.3.1.1
Annulez le facteur commun.
Étape 3.3.1.2
Réécrivez l’expression.
Étape 4
Étape 4.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4.2
Toute racine de est .
Étape 4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
La variable a été annulée.
Tous les nombres réels
Étape 6
Le résultat peut être affiché en différentes formes.
Tous les nombres réels
Notation d’intervalle :