Entrer un problème...
Mathématiques de base Exemples
Étape 1
Placez le signe moins devant la fraction.
Étape 2
Multipliez le numérateur de la première fraction par le dénominateur de la deuxième fraction. Définissez une valeur égale au produit du dénominateur de la première fraction et du numérateur de la deuxième fraction.
Étape 3
Étape 3.1
Simplifiez .
Étape 3.1.1
Réécrivez.
Étape 3.1.2
Simplifiez en ajoutant des zéros.
Étape 3.1.3
Appliquez la propriété distributive.
Étape 3.1.4
Simplifiez l’expression.
Étape 3.1.4.1
Multipliez par .
Étape 3.1.4.2
Multipliez par .
Étape 3.2
Simplifiez .
Étape 3.2.1
Simplifiez en multipliant.
Étape 3.2.1.1
Appliquez la propriété distributive.
Étape 3.2.1.2
Simplifiez l’expression.
Étape 3.2.1.2.1
Déplacez à gauche de .
Étape 3.2.1.2.2
Multipliez par .
Étape 3.2.2
Réécrivez comme .
Étape 3.3
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.3.1
Ajoutez aux deux côtés de l’équation.
Étape 3.3.2
Additionnez et .
Étape 3.4
Soustrayez des deux côtés de l’équation.
Étape 3.5
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.6
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.7
Simplifiez
Étape 3.7.1
Simplifiez le numérateur.
Étape 3.7.1.1
Élevez à la puissance .
Étape 3.7.1.2
Multipliez .
Étape 3.7.1.2.1
Multipliez par .
Étape 3.7.1.2.2
Multipliez par .
Étape 3.7.1.3
Additionnez et .
Étape 3.7.1.4
Réécrivez comme .
Étape 3.7.1.4.1
Factorisez à partir de .
Étape 3.7.1.4.2
Réécrivez comme .
Étape 3.7.1.5
Extrayez les termes de sous le radical.
Étape 3.7.2
Multipliez par .
Étape 3.7.3
Simplifiez .
Étape 3.8
La réponse finale est la combinaison des deux solutions.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :