Entrer un problème...
Mathématiques de base Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 1.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 1.4
a des facteurs de et .
Étape 1.5
n’a pas de facteur hormis et .
est un nombre premier
Étape 1.6
Les facteurs premiers pour sont .
Étape 1.6.1
a des facteurs de et .
Étape 1.6.2
a des facteurs de et .
Étape 1.7
Multipliez .
Étape 1.7.1
Multipliez par .
Étape 1.7.2
Multipliez par .
Étape 1.8
Le facteur pour est lui-même.
se produit fois.
Étape 1.9
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 1.10
Le facteur pour est lui-même.
se produit fois.
Étape 1.11
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 1.12
Multipliez par .
Étape 1.13
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez chaque terme.
Étape 2.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.1.2
Annulez le facteur commun de .
Étape 2.2.1.2.1
Factorisez à partir de .
Étape 2.2.1.2.2
Factorisez à partir de .
Étape 2.2.1.2.3
Annulez le facteur commun.
Étape 2.2.1.2.4
Réécrivez l’expression.
Étape 2.2.1.3
Associez et .
Étape 2.2.1.4
Multipliez par .
Étape 2.2.1.5
Annulez le facteur commun de .
Étape 2.2.1.5.1
Factorisez à partir de .
Étape 2.2.1.5.2
Annulez le facteur commun.
Étape 2.2.1.5.3
Réécrivez l’expression.
Étape 2.2.1.6
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.2.1.7
Annulez le facteur commun de .
Étape 2.2.1.7.1
Factorisez à partir de .
Étape 2.2.1.7.2
Factorisez à partir de .
Étape 2.2.1.7.3
Annulez le facteur commun.
Étape 2.2.1.7.4
Réécrivez l’expression.
Étape 2.2.1.8
Associez et .
Étape 2.2.1.9
Annulez le facteur commun de .
Étape 2.2.1.9.1
Annulez le facteur commun.
Étape 2.2.1.9.2
Réécrivez l’expression.
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.3.2
Annulez le facteur commun de .
Étape 2.3.2.1
Factorisez à partir de .
Étape 2.3.2.2
Annulez le facteur commun.
Étape 2.3.2.3
Réécrivez l’expression.
Étape 2.3.3
Annulez le facteur commun de .
Étape 2.3.3.1
Factorisez à partir de .
Étape 2.3.3.2
Annulez le facteur commun.
Étape 2.3.3.3
Réécrivez l’expression.
Étape 3
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Divisez chaque terme dans par et simplifiez.
Étape 3.3.1
Divisez chaque terme dans par .
Étape 3.3.2
Simplifiez le côté gauche.
Étape 3.3.2.1
Annulez le facteur commun de .
Étape 3.3.2.1.1
Annulez le facteur commun.
Étape 3.3.2.1.2
Divisez par .
Étape 3.3.3
Simplifiez le côté droit.
Étape 3.3.3.1
Placez le signe moins devant la fraction.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :