Mathématiques de base Exemples

Resolva para y (-4y+3)/2=7/(2y)
Étape 1
Multipliez le numérateur de la première fraction par le dénominateur de la deuxième fraction. Définissez une valeur égale au produit du dénominateur de la première fraction et du numérateur de la deuxième fraction.
Étape 2
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Supprimez les parenthèses.
Étape 2.1.2
Multipliez par .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.2.2
Appliquez la propriété distributive.
Étape 2.2.2.3
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.3.1
Déplacez .
Étape 2.2.2.3.2
Multipliez par .
Étape 2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Divisez par .
Étape 2.3
Soustrayez des deux côtés de l’équation.
Étape 2.4
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.5
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.6
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.1
Élevez à la puissance .
Étape 2.6.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.6.1.2.1
Multipliez par .
Étape 2.6.1.2.2
Multipliez par .
Étape 2.6.1.3
Soustrayez de .
Étape 2.6.1.4
Réécrivez comme .
Étape 2.6.1.5
Réécrivez comme .
Étape 2.6.1.6
Réécrivez comme .
Étape 2.6.2
Multipliez par .
Étape 2.6.3
Simplifiez .
Étape 2.7
La réponse finale est la combinaison des deux solutions.