Entrer un problème...
Mathématiques de base Exemples
Étape 1
Étape 1.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Réécrivez comme plus
Étape 1.1.3
Appliquez la propriété distributive.
Étape 1.1.4
Multipliez par .
Étape 1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 1.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.4
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.5
Le facteur pour est lui-même.
se produit fois.
Étape 2.6
Le facteur pour est lui-même.
se produit fois.
Étape 2.7
Le facteur pour est lui-même.
se produit fois.
Étape 2.8
Le facteur pour est lui-même.
se produit fois.
Étape 2.9
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Annulez le facteur commun de .
Étape 3.2.1.1.1
Annulez le facteur commun.
Étape 3.2.1.1.2
Réécrivez l’expression.
Étape 3.2.1.2
Appliquez la propriété distributive.
Étape 3.2.1.3
Multipliez par .
Étape 3.2.1.4
Annulez le facteur commun de .
Étape 3.2.1.4.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.4.2
Factorisez à partir de .
Étape 3.2.1.4.3
Annulez le facteur commun.
Étape 3.2.1.4.4
Réécrivez l’expression.
Étape 3.2.1.5
Appliquez la propriété distributive.
Étape 3.2.1.6
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.1.7
Multipliez par .
Étape 3.2.1.8
Simplifiez chaque terme.
Étape 3.2.1.8.1
Multipliez par en additionnant les exposants.
Étape 3.2.1.8.1.1
Déplacez .
Étape 3.2.1.8.1.2
Multipliez par .
Étape 3.2.1.8.2
Multipliez par .
Étape 3.2.2
Soustrayez de .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Annulez le facteur commun de .
Étape 3.3.1.1
Annulez le facteur commun.
Étape 3.3.1.2
Réécrivez l’expression.
Étape 4
Étape 4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 4.1.1
Ajoutez aux deux côtés de l’équation.
Étape 4.1.2
Soustrayez des deux côtés de l’équation.
Étape 4.1.3
Associez les termes opposés dans .
Étape 4.1.3.1
Soustrayez de .
Étape 4.1.3.2
Additionnez et .
Étape 4.1.4
Additionnez et .
Étape 4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2.2
Additionnez et .
Étape 4.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4.4
Simplifiez .
Étape 4.4.1
Réécrivez comme .
Étape 4.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5.3
La solution complète est le résultat des parties positive et négative de la solution.