Mathématiques de base Exemples

Resolva para z (z^2+4)^(2/3)=25
Étape 1
Élevez chaque côté de l’équation à la puissance pour éliminer l’exposant fractionnel du côté gauche.
Étape 2
Simplifiez l’exposant.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1.2.1
Annulez le facteur commun.
Étape 2.1.1.1.2.2
Réécrivez l’expression.
Étape 2.1.1.1.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1.3.1
Annulez le facteur commun.
Étape 2.1.1.1.3.2
Réécrivez l’expression.
Étape 2.1.1.2
Simplifiez
Étape 2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1.1
Réécrivez comme .
Étape 2.2.1.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.2.1
Annulez le facteur commun.
Étape 2.2.1.2.2
Réécrivez l’expression.
Étape 2.2.1.3
Élevez à la puissance .
Étape 3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.2
Soustrayez de .
Étape 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez comme .
Étape 3.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.6
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.7
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.7.1
Soustrayez des deux côtés de l’équation.
Étape 3.7.2
Soustrayez de .
Étape 3.8
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.9
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.9.1
Réécrivez comme .
Étape 3.9.2
Réécrivez comme .
Étape 3.9.3
Réécrivez comme .
Étape 3.10
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.10.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.10.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.10.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.11
La solution complète est le résultat des parties positive et négative de la solution.