Mathématiques de base Exemples

Resolva para z 16=3(z-1)(z-7)
Étape 1
Réécrivez l’équation comme .
Étape 2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Annulez le facteur commun.
Étape 2.2.1.2
Divisez par .
Étape 2.2.2
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Appliquez la propriété distributive.
Étape 2.2.2.2
Appliquez la propriété distributive.
Étape 2.2.2.3
Appliquez la propriété distributive.
Étape 2.2.3
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1.1
Multipliez par .
Étape 2.2.3.1.2
Déplacez à gauche de .
Étape 2.2.3.1.3
Réécrivez comme .
Étape 2.2.3.1.4
Multipliez par .
Étape 2.2.3.2
Soustrayez de .
Étape 3
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.2.2
Associez et .
Étape 3.2.3
Associez les numérateurs sur le dénominateur commun.
Étape 3.2.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Multipliez par .
Étape 3.2.4.2
Soustrayez de .
Étape 4
Multipliez par le plus petit dénominateur commun , puis simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la propriété distributive.
Étape 4.2
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Multipliez par .
Étape 4.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Annulez le facteur commun.
Étape 4.2.2.2
Réécrivez l’expression.
Étape 5
Utilisez la formule quadratique pour déterminer les solutions.
Étape 6
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 7
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 7.1.1
Élevez à la puissance .
Étape 7.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.2.1
Multipliez par .
Étape 7.1.2.2
Multipliez par .
Étape 7.1.3
Soustrayez de .
Étape 7.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 7.1.4.1
Factorisez à partir de .
Étape 7.1.4.2
Réécrivez comme .
Étape 7.1.5
Extrayez les termes de sous le radical.
Étape 7.2
Multipliez par .
Étape 7.3
Simplifiez .
Étape 8
La réponse finale est la combinaison des deux solutions.
Étape 9
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :