Mathématiques de base Exemples

Resolva para y 8y^2(y^2-4)^(1/3)+(y^2-4)^(4/3)=0
Étape 1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Factorisez à partir de .
Étape 1.1.2
Factorisez à partir de .
Étape 1.1.3
Factorisez à partir de .
Étape 1.2
Divisez par .
Étape 1.3
Simplifiez
Étape 1.4
Additionnez et .
Étape 1.5
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Réécrivez en forme factorisée.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1.1
Réécrivez comme .
Étape 1.5.1.2
Réécrivez comme .
Étape 1.5.1.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 1.5.2
Supprimez les parenthèses inutiles.
Étape 2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Définissez le égal à .
Étape 3.2.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Ajoutez aux deux côtés de l’équation.
Étape 3.2.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 3.2.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.3.1
Réécrivez comme .
Étape 3.2.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.2.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.2.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.2.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.1
Divisez chaque terme dans par .
Étape 4.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.2.1.2
Divisez par .
Étape 4.2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.2.3.1
Placez le signe moins devant la fraction.
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 5.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.1
Divisez chaque terme dans par .
Étape 5.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.2.2.1.1
Annulez le facteur commun.
Étape 5.2.2.2.1.2
Divisez par .
Étape 6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :