Entrer un problème...
Mathématiques de base Exemples
Étape 1
Étape 1.1
Réécrivez comme .
Étape 1.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 2.4
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 2.5
Le facteur pour est lui-même.
se produit fois.
Étape 2.6
Le facteur pour est lui-même.
se produit fois.
Étape 2.7
Le facteur pour est lui-même.
se produit fois.
Étape 2.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez chaque terme.
Étape 3.2.1.1
Annulez le facteur commun de .
Étape 3.2.1.1.1
Annulez le facteur commun.
Étape 3.2.1.1.2
Réécrivez l’expression.
Étape 3.2.1.2
Annulez le facteur commun de .
Étape 3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.2.2
Factorisez à partir de .
Étape 3.2.1.2.3
Annulez le facteur commun.
Étape 3.2.1.2.4
Réécrivez l’expression.
Étape 3.2.1.3
Appliquez la propriété distributive.
Étape 3.2.1.4
Multipliez par .
Étape 3.2.2
Soustrayez de .
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Annulez le facteur commun de .
Étape 3.3.1.1
Annulez le facteur commun.
Étape 3.3.1.2
Réécrivez l’expression.
Étape 3.3.2
Appliquez la propriété distributive.
Étape 3.3.3
Multipliez par .
Étape 4
Étape 4.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 4.1.1
Soustrayez des deux côtés de l’équation.
Étape 4.1.2
Soustrayez de .
Étape 4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Soustrayez de .
Étape 4.3
Divisez chaque terme dans par et simplifiez.
Étape 4.3.1
Divisez chaque terme dans par .
Étape 4.3.2
Simplifiez le côté gauche.
Étape 4.3.2.1
Annulez le facteur commun de .
Étape 4.3.2.1.1
Annulez le facteur commun.
Étape 4.3.2.1.2
Divisez par .
Étape 4.3.3
Simplifiez le côté droit.
Étape 4.3.3.1
Divisez par .
Étape 5
Excluez les solutions qui ne rendent pas vrai.