Mathématiques de base Exemples

Factoriser (18n^2-98)/(3n^2-10n+7)*(n^2-11n+28)/(4n^2+8n-5)
Étape 1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Factorisez à partir de .
Étape 1.2
Factorisez à partir de .
Étape 1.3
Factorisez à partir de .
Étape 2
Réécrivez comme .
Étape 3
Réécrivez comme .
Étape 4
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 4.2
Supprimez les parenthèses inutiles.
Étape 5
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Factorisez à partir de .
Étape 5.1.2
Réécrivez comme plus
Étape 5.1.3
Appliquez la propriété distributive.
Étape 5.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 5.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 5.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 6
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Annulez le facteur commun.
Étape 6.2
Réécrivez l’expression.
Étape 7
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 7.2
Écrivez la forme factorisée avec ces entiers.
Étape 8
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Factorisez à partir de .
Étape 8.1.2
Réécrivez comme plus
Étape 8.1.3
Appliquez la propriété distributive.
Étape 8.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 8.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 8.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .