Entrer un problème...
Mathématiques de base Exemples
Étape 1
Étape 1.1
Réécrivez comme .
Étape 1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 1.3
Réécrivez le polynôme.
Étape 1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 2
Réécrivez comme .
Étape 3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 4
Étape 4.1
Factorisez à partir de .
Étape 4.2
Factorisez à partir de .
Étape 4.3
Annulez le facteur commun.
Étape 4.4
Réécrivez l’expression.
Étape 5
Étape 5.1
Factorisez à partir de .
Étape 5.2
Factorisez à partir de .
Étape 5.3
Factorisez à partir de .
Étape 5.4
Factorisez à partir de .
Étape 5.5
Factorisez à partir de .
Étape 6
Étape 6.1
Factorisez à l’aide de la méthode AC.
Étape 6.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 6.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 6.2
Supprimez les parenthèses inutiles.
Étape 7
Étape 7.1
Factorisez à partir de .
Étape 7.2
Factorisez à partir de .
Étape 7.3
Factorisez à partir de .
Étape 8
Réécrivez comme .
Étape 9
Étape 9.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 9.2
Supprimez les parenthèses inutiles.
Étape 10
Étape 10.1
Annulez le facteur commun.
Étape 10.2
Réécrivez l’expression.