Mathématiques de base Exemples

Simplifier ((2c^2+7c-15)/(27-18c))÷((c^4+c^3-20c^2)/(6c^3-96c))
Étape 1
Pour diviser par une fraction, multipliez par sa réciproque.
Étape 2
Factorisez par regroupement.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.2
Réécrivez comme plus
Étape 2.1.3
Appliquez la propriété distributive.
Étape 2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 3
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1.1
Factorisez à partir de .
Étape 3.1.2
Factorisez à partir de .
Étape 3.1.3
Factorisez à partir de .
Étape 3.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Étape 3.2.2
Réécrivez comme .
Étape 3.2.3
Factorisez à partir de .
Étape 3.2.4
Réécrivez comme .
Étape 3.2.5
Remettez les termes dans l’ordre.
Étape 3.2.6
Annulez le facteur commun.
Étape 3.2.7
Réécrivez l’expression.
Étape 3.3
Placez le signe moins devant la fraction.
Étape 4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Factorisez à partir de .
Étape 4.1.3
Factorisez à partir de .
Étape 4.2
Réécrivez comme .
Étape 4.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 5
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1.1
Factorisez à partir de .
Étape 5.1.2
Factorisez à partir de .
Étape 5.1.3
Factorisez à partir de .
Étape 5.1.4
Factorisez à partir de .
Étape 5.1.5
Factorisez à partir de .
Étape 5.2
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 5.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 6
Simplifiez les termes.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 6.1.2
Factorisez à partir de .
Étape 6.1.3
Factorisez à partir de .
Étape 6.1.4
Annulez le facteur commun.
Étape 6.1.5
Réécrivez l’expression.
Étape 6.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Factorisez à partir de .
Étape 6.2.2
Factorisez à partir de .
Étape 6.2.3
Annulez le facteur commun.
Étape 6.2.4
Réécrivez l’expression.
Étape 6.3
Multipliez par .
Étape 6.4
Multipliez par .
Étape 6.5
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 6.5.1
Factorisez à partir de .
Étape 6.5.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 6.5.2.1
Factorisez à partir de .
Étape 6.5.2.2
Annulez le facteur commun.
Étape 6.5.2.3
Réécrivez l’expression.
Étape 6.6
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.6.1
Annulez le facteur commun.
Étape 6.6.2
Réécrivez l’expression.
Étape 6.7
Placez le signe moins devant la fraction.