Entrer un problème...
Algèbre Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Ajoutez aux deux côtés de l’équation.
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Étape 4.1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 4.1.2
Supprimez les parenthèses.
Étape 4.1.3
Le plus petit multiple commun de toute expression est l’expression.
Étape 4.2
Multiplier chaque terme dans par afin d’éliminer les fractions.
Étape 4.2.1
Multipliez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Étape 4.2.2.1
Simplifiez chaque terme.
Étape 4.2.2.1.1
Annulez le facteur commun de .
Étape 4.2.2.1.1.1
Annulez le facteur commun.
Étape 4.2.2.1.1.2
Réécrivez l’expression.
Étape 4.2.2.1.2
Appliquez la propriété distributive.
Étape 4.2.2.1.3
Multipliez par .
Étape 4.2.2.2
Simplifiez en ajoutant des termes.
Étape 4.2.2.2.1
Soustrayez de .
Étape 4.2.2.2.2
Additionnez et .
Étape 4.2.3
Simplifiez le côté droit.
Étape 4.2.3.1
Multipliez par .
Étape 4.3
Résolvez l’équation.
Étape 4.3.1
Soustrayez des deux côtés de l’équation.
Étape 4.3.2
Divisez chaque terme dans par et simplifiez.
Étape 4.3.2.1
Divisez chaque terme dans par .
Étape 4.3.2.2
Simplifiez le côté gauche.
Étape 4.3.2.2.1
Annulez le facteur commun de .
Étape 4.3.2.2.1.1
Annulez le facteur commun.
Étape 4.3.2.2.1.2
Divisez par .
Étape 4.3.2.3
Simplifiez le côté droit.
Étape 4.3.2.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 6