Algèbre Exemples

Identifier les zéros et leurs multiplicités f(x)=8x^2-16x-15
Étape 1
Définissez égal à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Élevez à la puissance .
Étape 2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.2.1
Multipliez par .
Étape 2.3.1.2.2
Multipliez par .
Étape 2.3.1.3
Additionnez et .
Étape 2.3.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.4.1
Factorisez à partir de .
Étape 2.3.1.4.2
Réécrivez comme .
Étape 2.3.1.5
Extrayez les termes de sous le radical.
Étape 2.3.2
Multipliez par .
Étape 2.3.3
Simplifiez .
Étape 2.4
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.1
Élevez à la puissance .
Étape 2.4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.2.1
Multipliez par .
Étape 2.4.1.2.2
Multipliez par .
Étape 2.4.1.3
Additionnez et .
Étape 2.4.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1.4.1
Factorisez à partir de .
Étape 2.4.1.4.2
Réécrivez comme .
Étape 2.4.1.5
Extrayez les termes de sous le radical.
Étape 2.4.2
Multipliez par .
Étape 2.4.3
Simplifiez .
Étape 2.4.4
Remplacez le par .
Étape 2.5
Simplifiez l’expression pour résoudre la partie du .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.1
Élevez à la puissance .
Étape 2.5.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.2.1
Multipliez par .
Étape 2.5.1.2.2
Multipliez par .
Étape 2.5.1.3
Additionnez et .
Étape 2.5.1.4
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.4.1
Factorisez à partir de .
Étape 2.5.1.4.2
Réécrivez comme .
Étape 2.5.1.5
Extrayez les termes de sous le radical.
Étape 2.5.2
Multipliez par .
Étape 2.5.3
Simplifiez .
Étape 2.5.4
Remplacez le par .
Étape 2.6
La réponse finale est la combinaison des deux solutions.
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
Étape 3