Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 1.2
Évaluez .
Étape 1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.2.3
Multipliez par .
Étape 1.3
Évaluez .
Étape 1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.3.3
Multipliez par .
Étape 1.4
Évaluez .
Étape 1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.4.3
Multipliez par .
Étape 1.5
Évaluez .
Étape 1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 1.5.3
Multipliez par .
Étape 1.6
Différenciez en utilisant la règle de la constante.
Étape 1.6.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 1.6.2
Additionnez et .
Étape 2
Étape 2.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 2.2
Évaluez .
Étape 2.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.2.3
Multipliez par .
Étape 2.3
Évaluez .
Étape 2.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.3.3
Multipliez par .
Étape 2.4
Évaluez .
Étape 2.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 2.4.3
Multipliez par .
Étape 2.5
Différenciez en utilisant la règle de la constante.
Étape 2.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 2.5.2
Additionnez et .
Étape 3
Pour déterminer les valeurs maximales et minimales locales de la fonction, définissez la dérivée égale à et résolvez.
Étape 4
Étape 4.1
Déterminez la dérivée première.
Étape 4.1.1
Selon la règle de la somme, la dérivée de par rapport à est .
Étape 4.1.2
Évaluez .
Étape 4.1.2.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.2.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.2.3
Multipliez par .
Étape 4.1.3
Évaluez .
Étape 4.1.3.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.3.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.3.3
Multipliez par .
Étape 4.1.4
Évaluez .
Étape 4.1.4.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.4.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.4.3
Multipliez par .
Étape 4.1.5
Évaluez .
Étape 4.1.5.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.5.2
Différenciez en utilisant la règle de puissance qui indique que est où .
Étape 4.1.5.3
Multipliez par .
Étape 4.1.6
Différenciez en utilisant la règle de la constante.
Étape 4.1.6.1
Comme est constant par rapport à , la dérivée de par rapport à est .
Étape 4.1.6.2
Additionnez et .
Étape 4.2
La dérivée première de par rapport à est .
Étape 5
Étape 5.1
Définissez la dérivée première égale à .
Étape 5.2
Représentez chaque côté de l’équation. La solution est la valeur x du point d’intersection.
Étape 6
Étape 6.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 7
Points critiques à évaluer.
Étape 8
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 9
Étape 9.1
Simplifiez chaque terme.
Étape 9.1.1
Élevez à la puissance .
Étape 9.1.2
Multipliez par .
Étape 9.1.3
Multipliez par .
Étape 9.2
Simplifiez en ajoutant des nombres.
Étape 9.2.1
Additionnez et .
Étape 9.2.2
Additionnez et .
Étape 10
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 11
Étape 11.1
Remplacez la variable par dans l’expression.
Étape 11.2
Simplifiez le résultat.
Étape 11.2.1
Simplifiez chaque terme.
Étape 11.2.1.1
Élevez à la puissance .
Étape 11.2.1.2
Multipliez par .
Étape 11.2.1.3
Élevez à la puissance .
Étape 11.2.1.4
Multipliez par .
Étape 11.2.1.5
Élevez à la puissance .
Étape 11.2.1.6
Multipliez par .
Étape 11.2.1.7
Multipliez par .
Étape 11.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 11.2.2.1
Additionnez et .
Étape 11.2.2.2
Additionnez et .
Étape 11.2.2.3
Soustrayez de .
Étape 11.2.2.4
Soustrayez de .
Étape 11.2.3
La réponse finale est .
Étape 12
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 13
Étape 13.1
Simplifiez chaque terme.
Étape 13.1.1
Élevez à la puissance .
Étape 13.1.2
Multipliez par .
Étape 13.1.3
Multipliez par .
Étape 13.2
Simplifiez en ajoutant des nombres.
Étape 13.2.1
Additionnez et .
Étape 13.2.2
Additionnez et .
Étape 14
est un minimum local car la valeur de la dérivée seconde est positive. On parle de test de la dérivée seconde.
est un minimum local
Étape 15
Étape 15.1
Remplacez la variable par dans l’expression.
Étape 15.2
Simplifiez le résultat.
Étape 15.2.1
Simplifiez chaque terme.
Étape 15.2.1.1
Élevez à la puissance .
Étape 15.2.1.2
Multipliez par .
Étape 15.2.1.3
Élevez à la puissance .
Étape 15.2.1.4
Multipliez par .
Étape 15.2.1.5
Élevez à la puissance .
Étape 15.2.1.6
Multipliez par .
Étape 15.2.1.7
Multipliez par .
Étape 15.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 15.2.2.1
Additionnez et .
Étape 15.2.2.2
Additionnez et .
Étape 15.2.2.3
Soustrayez de .
Étape 15.2.2.4
Soustrayez de .
Étape 15.2.3
La réponse finale est .
Étape 16
Évaluez la dérivée seconde sur . Si la dérivée seconde est positive, il s’agit d’un minimum local. Si elle est négative, il s’agit d’un maximum local.
Étape 17
Étape 17.1
Simplifiez chaque terme.
Étape 17.1.1
Élevez à la puissance .
Étape 17.1.2
Multipliez par .
Étape 17.1.3
Multipliez par .
Étape 17.2
Simplifiez en ajoutant et en soustrayant.
Étape 17.2.1
Soustrayez de .
Étape 17.2.2
Additionnez et .
Étape 18
est un maximum local car la valeur de la dérivée seconde est négative. On parle de test de la dérivée seconde.
est un maximum local
Étape 19
Étape 19.1
Remplacez la variable par dans l’expression.
Étape 19.2
Simplifiez le résultat.
Étape 19.2.1
Simplifiez chaque terme.
Étape 19.2.1.1
Élevez à la puissance .
Étape 19.2.1.2
Multipliez par .
Étape 19.2.1.3
Élevez à la puissance .
Étape 19.2.1.4
Multipliez par .
Étape 19.2.1.5
Élevez à la puissance .
Étape 19.2.1.6
Multipliez par .
Étape 19.2.1.7
Multipliez par .
Étape 19.2.2
Simplifiez en ajoutant et en soustrayant.
Étape 19.2.2.1
Soustrayez de .
Étape 19.2.2.2
Additionnez et .
Étape 19.2.2.3
Additionnez et .
Étape 19.2.2.4
Soustrayez de .
Étape 19.2.3
La réponse finale est .
Étape 20
Ce sont les extrema locaux pour .
est un maximum local
est un minimum local
est un maximum local
Étape 21