Algèbre Exemples

Trouver la fonction réciproque -1/(4x)
Étape 1
Interchangez les variables.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 2.3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Multipliez chaque terme dans par .
Étape 2.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1.1
Placez le signe négatif initial dans dans le numérateur.
Étape 2.3.2.1.2
Annulez le facteur commun.
Étape 2.3.2.1.3
Réécrivez l’expression.
Étape 2.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.3.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Réécrivez l’équation comme .
Étape 2.4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.1.2
Réécrivez l’expression.
Étape 2.4.2.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.2.1
Annulez le facteur commun.
Étape 2.4.2.2.2.2
Divisez par .
Étape 2.4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.3.1
Placez le signe moins devant la fraction.
Étape 3
Replace with to show the final answer.
Étape 4
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour vérifier l’inverse, vérifiez si et .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Définissez la fonction de résultat composé.
Étape 4.2.2
Évaluez en remplaçant la valeur de par .
Étape 4.2.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Réécrivez comme .
Étape 4.2.3.2
Placez le signe moins devant la fraction.
Étape 4.2.4
Associez et .
Étape 4.2.5
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.5.1
Annulez le facteur commun.
Étape 4.2.5.2
Réécrivez l’expression.
Étape 4.2.6
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.2.7
Multipliez par .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez la fonction de résultat composé.
Étape 4.3.2
Évaluez en remplaçant la valeur de par .
Étape 4.3.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Réécrivez comme .
Étape 4.3.3.2
Placez le signe moins devant la fraction.
Étape 4.3.4
Associez et .
Étape 4.3.5
Réduisez l’expression en annulant les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.5.1
Annulez le facteur commun.
Étape 4.3.5.2
Réécrivez l’expression.
Étape 4.3.6
Multipliez le numérateur par la réciproque du dénominateur.
Étape 4.3.7
Multipliez par .
Étape 4.4
Comme et , est l’inverse de .