Algèbre Exemples

Déterminer le nombre possible de racines réelles f(x)=-3x^4+5x^3-x^2+8x+4
Étape 1
Pour déterminer le nombre possible de racines positives, regardez les signes sur les coefficients et comptez le nombre de fois que les signes sur les coefficients passent de positif à négatif ou de négatif à positif.
Étape 2
Comme il y a changements de signes du terme le plus haut au terme le plus bas, il y a au plus racines positives (règle des signes de Descartes). Les autres nombres possibles des racines positives sont déterminés en soustrayant des paires des racines .
Racines positives : ou
Étape 3
Pour déterminer le nombre possible de racines négatives, remplacez par et renouvelez la comparaison des signes.
Étape 4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Appliquez la règle de produit à .
Étape 4.2
Élevez à la puissance .
Étape 4.3
Multipliez par .
Étape 4.4
Appliquez la règle de produit à .
Étape 4.5
Élevez à la puissance .
Étape 4.6
Multipliez par .
Étape 4.7
Appliquez la règle de produit à .
Étape 4.8
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 4.8.1
Déplacez .
Étape 4.8.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 4.8.2.1
Élevez à la puissance .
Étape 4.8.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 4.8.3
Additionnez et .
Étape 4.9
Élevez à la puissance .
Étape 4.10
Multipliez par .
Étape 5
Comme il y a changement de signe du terme le plus haut au terme le plus bas, il y a au plus racine négative (règle des signes de Descartes).
Racines négatives :
Étape 6
Le nombre possible de racines positives est ou , et le nombre possible de racines négatives est .
Racines positives : ou
Racines négatives :