Entrer un problème...
Algèbre Exemples
Étape 1
Définissez égal à .
Étape 2
Étape 2.1
Factorisez le côté gauche de l’équation.
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Factorisez à partir de .
Étape 2.1.1.4
Factorisez à partir de .
Étape 2.1.1.5
Factorisez à partir de .
Étape 2.1.1.6
Factorisez à partir de .
Étape 2.1.1.7
Factorisez à partir de .
Étape 2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.1.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.3
Factorisez.
Étape 2.1.3.1
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.1.3.2
Supprimez les parenthèses inutiles.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.4.2.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.4.2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.4.2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.4.2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :
Étape 4