Algèbre Exemples

Trouver la pente et l'ordonnée à l'origine 2y-4x=32
Étape 1
Réécrivez en forme affine.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
La forme affine est , où est la pente et est l’ordonnée à l’origine.
Étape 1.2
Ajoutez aux deux côtés de l’équation.
Étape 1.3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Divisez chaque terme dans par .
Étape 1.3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.2.1.1
Annulez le facteur commun.
Étape 1.3.2.1.2
Divisez par .
Étape 1.3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1.1
Divisez par .
Étape 1.3.3.1.2
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1.2.1
Factorisez à partir de .
Étape 1.3.3.1.2.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.3.1.2.2.1
Factorisez à partir de .
Étape 1.3.3.1.2.2.2
Annulez le facteur commun.
Étape 1.3.3.1.2.2.3
Réécrivez l’expression.
Étape 1.3.3.1.2.2.4
Divisez par .
Étape 1.4
Remettez dans l’ordre et .
Étape 2
Utilisez la forme affine pour déterminer la pente et l’ordonnée à l’origine.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminez les valeurs de et en utilisant la formule .
Étape 2.2
La pente de la droite est la valeur de et l’ordonnée à l’origine est la valeur de .
Pente :
ordonnée à l’origine :
Pente :
ordonnée à l’origine :
Étape 3