Entrer un problème...
Algèbre Exemples
Étape 1
Ajoutez aux deux côtés de l’inégalité.
Étape 2
Étape 2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.3
Simplifiez le numérateur.
Étape 2.3.1
Appliquez la propriété distributive.
Étape 2.3.2
Multipliez par .
Étape 2.3.3
Additionnez et .
Étape 2.3.4
Soustrayez de .
Étape 2.3.5
Factorisez à partir de .
Étape 2.3.5.1
Factorisez à partir de .
Étape 2.3.5.2
Factorisez à partir de .
Étape 2.3.5.3
Factorisez à partir de .
Étape 3
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 4
Soustrayez des deux côtés de l’équation.
Étape 5
Ajoutez aux deux côtés de l’équation.
Étape 6
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 7
Consolidez les solutions.
Étape 8
Étape 8.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 8.2
Ajoutez aux deux côtés de l’équation.
Étape 8.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 9
Utilisez chaque racine pour créer des intervalles de test.
Étape 10
Étape 10.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.1.2
Remplacez par dans l’inégalité d’origine.
Étape 10.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 10.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.2.2
Remplacez par dans l’inégalité d’origine.
Étape 10.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 10.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.3.2
Remplacez par dans l’inégalité d’origine.
Étape 10.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 10.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 11
La solution se compose de tous les intervalles vrais.
ou
Étape 12
Convertissez l’inégalité en une notation d’intervalle.
Étape 13