Algèbre Exemples

Transformer en un intervalle x^3-8x^2-x+8>=0
Étape 1
Convertissez l’inégalité en une équation.
Étape 2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.2
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.3
Réécrivez comme .
Étape 2.4
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2.4.2
Supprimez les parenthèses inutiles.
Étape 3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Ajoutez aux deux côtés de l’équation.
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
Ajoutez aux deux côtés de l’équation.
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Utilisez chaque racine pour créer des intervalles de test.
Étape 9
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 9.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.1.2
Remplacez par dans l’inégalité d’origine.
Étape 9.1.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 9.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 9.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.2.2
Remplacez par dans l’inégalité d’origine.
Étape 9.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 9.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 9.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.3.2
Remplacez par dans l’inégalité d’origine.
Étape 9.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 9.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 9.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.4.2
Remplacez par dans l’inégalité d’origine.
Étape 9.4.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 9.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Vrai
Faux
Vrai
Faux
Vrai
Étape 10
La solution se compose de tous les intervalles vrais.
ou
Étape 11
Convertissez l’inégalité en une notation d’intervalle.
Étape 12