Entrer un problème...
Algèbre Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Étape 2.2.3.1
Divisez par .
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Factorisez à partir de .
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Factorisez à partir de .
Étape 4.1.3
Factorisez à partir de .
Étape 4.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3
Définissez égal à et résolvez .
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Résolvez pour .
Étape 4.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4.3.2.2
Simplifiez .
Étape 4.3.2.2.1
Réécrivez comme .
Étape 4.3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 4.4
Définissez égal à et résolvez .
Étape 4.4.1
Définissez égal à .
Étape 4.4.2
Soustrayez des deux côtés de l’équation.
Étape 4.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6
Étape 6.1
Définissez le numérateur égal à zéro.
Étape 6.2
Résolvez l’équation pour .
Étape 6.2.1
Factorisez à l’aide de la méthode AC.
Étape 6.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 6.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 6.2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6.2.3
Définissez égal à et résolvez .
Étape 6.2.3.1
Définissez égal à .
Étape 6.2.3.2
Soustrayez des deux côtés de l’équation.
Étape 6.2.4
Définissez égal à et résolvez .
Étape 6.2.4.1
Définissez égal à .
Étape 6.2.4.2
Soustrayez des deux côtés de l’équation.
Étape 6.2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6.3
Excluez les solutions qui ne rendent pas vrai.
Étape 7
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 8