Entrer un problème...
Algèbre Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Factorisez le côté gauche de l’équation.
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Factorisez à partir de .
Étape 2.1.1.4
Factorisez à partir de .
Étape 2.1.1.5
Factorisez à partir de .
Étape 2.1.2
Réécrivez comme .
Étape 2.1.3
Laissez . Remplacez toutes les occurrences de par .
Étape 2.1.4
Factorisez à l’aide de la méthode AC.
Étape 2.1.4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.1.4.2
Écrivez la forme factorisée avec ces entiers.
Étape 2.1.5
Factorisez.
Étape 2.1.5.1
Remplacez toutes les occurrences de par .
Étape 2.1.5.2
Supprimez les parenthèses inutiles.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Étape 2.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3.2.2
Simplifiez .
Étape 2.3.2.2.1
Réécrivez comme .
Étape 2.3.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3.2.2.3
Plus ou moins est .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.4.2.3
Simplifiez .
Étape 2.4.2.3.1
Réécrivez comme .
Étape 2.4.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels.
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Étape 2.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.5.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.5.2.3
Simplifiez .
Étape 2.5.2.3.1
Réécrivez comme .
Étape 2.5.2.3.1.1
Réécrivez comme .
Étape 2.5.2.3.1.2
Réécrivez comme .
Étape 2.5.2.3.2
Extrayez les termes de sous le radical.
Étape 2.5.2.3.3
Réécrivez comme .
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 4